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An approximate method that allows efficient calculation of the total 7r-electron 
energy (E~) ofbenzenoid hydrocarbons is presented. It is based on an additive 
scheme taking into account the characteristic features of variously annelated 
benzene rings expressed in terms of the numbers corresponding to the different 
nodes of  the dual graph of the hydrocarbon molecule. The parameters of the 
model are fitted by a test calculation on 1030 hydrocarbons. The mean square 
error obtained in E~ is 0.07%. The method provides a connection between 
the names of  hydrocarbons and their stabilities. 
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1. Introduction 

The total ~--electron energy (E~) is one of the most important topological 
properties of conjugated molecules [1]. In particular a great deal of  effort has 
been put into the construction of approximate methods to calculate the 7r-electron 
energy directly from molecular graphs [2, 3, 4]. 

The recently developed system for the compact naming of benzenoid hydrocar- 
bons [5] offers a possibility to construct a molecular graph almost directly from 
the name of  molecule. This gives a strong impetus to searching for a simple, but 
accurate enough method of direct computing the 7r-electron energy. 

The existing approximate formulae [6, 7] use the number of carbon atoms (N) ,  
bonds (M)  and Kekul6 structures (K):  

E= --- 0.442 N + 0.788M + 0.34K (0.632)M-N (1) 
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N 
E= = 1.804(Mq)]/2+O.421K(q/M)q/2+ 1.686; q = ~ - -  1. (2) 

Formula (1) was given by Hall [6], whereas formula (2) originates from Gutman 
[7]. In these formulae the E~ denotes the Hiickel total ~r-electron energy expressed 
in/3 units and with reference to the standard integral a as the zero of energies. 
In that strict sense the E~ quantity will be used in the later parts of  this paper. 
Attention will be turned exclusively to the non-charged hydrocarbons, consisting 
of only six-membered rings and having a singlet ground state. So, molecules such 
as for instance perinaphthene or triangulene are left out of consideration. 

2. The method of  additive nodal increments 

Let G be a molecular graph of a given benzenoid hydrocarbon. G'  is a dual 
graph [8] corresponding to the graph G, constructed by replacing all the hexagons 
of  G by dots (Fig. 1). The vertices of the graph G' we will call nodes. Excluding 
the benzene molecule, there are 12 types of nodes inherent in the benzenoid 
hydrocarbons (Fig. 2). Then we can observe the following: 

1. The linear polyacenes with n > 2 rings have 2 nodes of the type 1 and n - 2  
nodes of  the type 2. As was first found by Gutman [9] the E~ for these 
polyacenes is in good approximation to a linear function of n 

E~ = 5.6114n +2.4866. (3) 

The largest error which is encountered for naphthalene, is 0.03. Thus, in that 
case we can compute the E,~ energy as a sum of the nodal increments, using 
the values of 6.8547 and 5.6144 for nodes of type 1 and 2, respectively. 

2. There are hydrocarbons, which have equal numbers of nodes of the same type. 
We shall call these hydrocarbons isonodal. For instance, the hydrocarbons 1, 
2, 3 and 4, 5, 6, 7, 8 represent two families of such isonodal molecules (Fig. 
3). The first family includes the hydrocarbons with two nodes of type 1 and 
three nodes of type 3, while another one consists of hydrocarbons with two 
nodes of type 1 and four nodes of type 3. Extensive numerical testing shows, 
that isonodal hydrocarbons always have their E~ energies close to each other. 

. / V  

6 6' 
Fig. 1. The molecular graph G and the corresponding dual 
graph G' of/3.7/-pentacene 

1 2 3 4 5 6 7 8 9 10 1t 12 

Fig. 2. 12 types of nodes inherent in benzenoid hydrocarbons 



Additive nodal increments for approximate calculation of benzenoid hydrocarbons 317 

30,94322 30.93620 30.93858 

I 2 3 

36.68718 36.68/,78 36.69199 36.687/,3 36.68276 

& 5 6 7 8 

Fig. 3. Examples of the isonodal hydrocarbons 

3. It is easy to show, that the values of N and M for a given hydrocarbon can 
be evaluated exactly using the nodal increments: 

12 
N = ~ njg~ (4) 

j/1 

12 
M = 2 njg M (5) 

j/l 

where: nj is the number of the nodes of type j; gJ~ and gM-appropriate 
nodal increments given in Table 1. 

Hydrocarbons having at least one node of peritype are peri-ondensed. The 
cata-condensed hydrocarbons only have cata nodes (e.g. nodes of type 1, 2, 
3 or 5). 

The aforementioned observations encourage us to suppose that the value of 
the E~ can be approximately computed in terms of the nodal increments g~ as: 

12 

E~, ~- ~, nigh. (6) 
j / l  

Then, this proposition is to be verified numerically. 

Table 1. The nodal increments gN, gM and gE 

Node Type gN gM gE 

1 cata 5 5.5 6.845325 
2 cata 4 5.0 5.651851 
3 cata 4 5.0 5.751298 
4 peri 4~ 5.0 5.995198 
5 cata 3 4.5 4.715913 
6 peri 3�89 4.5 4.885685 
7 peri 3~ 4.5 5.243459 
8 pefi 2~ 4.0 4.225770 
9 pefi 2~ 4.0 4.227109 

10 preri 3 4.0 4.381249 
11 peri 2~ 3.5 3.678021 
12 pefi 2 3.0 3.094499 
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3. Numerical testing 

The validity of the additive nodal increments (ANI) method has been tried out 
on all the 1030 possible planar, singlet ground state benzenoid hydrocarbons 
with 2-8 rings. The gE increments were found by means of least squares fitting. 
The accuracy of the E~ is characterized by average error: 0.07%, standard 
deviation: 0.09% and the maximal error observed: 0.47%. It should be pointed 
out, that this method works better than the Hall and the Gutman formulae, for 
which the maximal errors were found to be 0.63% and 1.1% [7], respectively. 

The success of the ANI approach can be explained by taking into account the 
Hall formula and the observation 3. The ANI method accounts well for different 
E~'s due to different values of N and M, since they are exactly computed from 
their nodal increments gN and gM. Differences due to different K values are 
absorbed into the g~ coefficients. The connection between the nodal treatment 
and the valence molecular connectivity index [ 10] can also serve as an explanation 
for the performance of the ANI method [11]. 

The ANI approach has been used in approximate calculation of the E~ for some 
large benzenoid hydrocarbons. The results are given in Fig. 4 and Table 2. 

It is quite clear that the proposed algorithm can serve as a "pencil and paper" 
method for computing the total 7r-electron energy with relatively high accuracy. 
The total 7r-electron energy is directly related to the thermodynamical stability 
of the hydrocarbon [ 12] and the compact naming allows us to obtain information 
on the number of different nodes from its name in an efficient way. Thus, the 
presented method establishes a straightforward and auspicious connection 
between the names of hydrocarbons and their stabilities. 

1 2 3 4 

5 6 
Fig. 4. Examples of the ANI and exact E~ 
energies for some benzenoid hydrocarbons 

Table 2. Examples of the ANI and exact E~ energies for some benzenoid hydrocarbons 

Compound Compact Name N M K E~ (exact) E~ (ANI) Error [%] 

1 /8.30.14.15.2/-tridecacene 42 54 250 61.3689 61.1338 0.38 
2 /7.7.7/-nonacene 30 38 20 43.1198 43.0968 0.05 
3 / 14.15.7/-decacene 32 41 50 46.4974 46.4123 0.18 
4 /30.31.15/-tridecacene 40 52 105 58.3755 58.2693 0.18 
5 /28.18.17.9.7/-dodecacene 48 60 200 68.6102 68.4189 0.28 
6 /7.14.28/-nonacene 34 42 40 48.5320 48.6616 0.27 
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